

Dev Diary 7

 2

Salutations!

Hello everyone, welcome back for the 7th OpenVic Dev Diary! This one is packed

with pretty screenshots of models, maps and menus, as well as some discussion of

the backend work that makes it all possible.

Let’s begin with a quick overview of where we are in the project’s development

path. The parts needed to make OpenVic can be broken down into three broad

sections:

 Dataloading - parsing, validating and reading into memory all the text and

image files which define the game’s content. This includes loading vanilla

defines and any existing mod to the degree Victoria 2 supports it, with all the

fun edge cases and error handling that involves.

 User Interface - building out the visual side of the game: the map with all its

provinces, mapmodes and models, and the menus, every icon, textbox, tooltip,

button and slider, all behaving as is familiar to us from the original game.

Despite relying on the other sections for information to display, this is still a

massive task due to the number of menus, their complexity and the need to

ensure every component looks and functions like their Victoria 2 counterpart.

 Simulation - the core of the game, storing the game state and modifying it

according to rules and mechanics. This includes POPs, the economy, AI, units,

battles, events, decisions, and everything else that makes up the gameplay. It’s

both the most important and least well understood part of Victoria 2, and so

the part of OpenVic that is most crucial to get right.

We finished the Dataloading section at the beginning of the year and since then have

shifted focus on to the User Interface. We decided to prioritise this over the

Simulation as it will be a lot easier to implement OpenVic’s complex mechanics

when we’re able to see the results in game as we develop them. This also gives us

more visible progress to share, rather than having everything in a user-unfriendly

terminal until the very end.

2

 3

 We are currently midway through the User Interface section with the backend code

for loading models and generating menus from text defines finished, leaving us to

implement the scripts that use that code to generate and control the behaviour of

specific menus as well as some further mostly cosmetic map and model work.

With that said, let’s move on to the star feature of this Dev Diary and read about

how Nemrav wrote our model loader.

Models

Victoria 2, like other Paradox titles from the same period, uses XAC and XSM files

for 3D models and animations respectively. These were formats created as part of

the EmotionFX suite by the now defunct Mystic Game Development. There is no

official documentation online for them, but we were still able to find unofficial

documentation dating to 2014 on Internet Archive’s wayback machine. This

documentation allowed us to get an initial prototype for a model and animation

loader working in Godot as a separate side project.

 3

 4

In essence, the file format is divided into chunks each with a type, length, and

version. Depending on the chunk’s type, it could contain metadata, vertex data,

skeleton, or material (texture) information. Writing a loader was a matter of

looking at the variables specified for each chunk in the documentation, then writing

a function which would load that data into Godot and assign it to our own

matching variables. Thankfully most 3D file formats are simply different ways of

storing what is fundamentally the same kind of data (3D positions and rotations), so

mapping this data to what Godot wanted was fairly simple.

However, when testing that all models could be loaded, we noticed that the

documentation for the model files we were using had to be incomplete because

some models refused to load. These were due to some particular files using older

chunk versions, and chunk types that the documentation didn’t cover. After some

investigation, we found that the older chunk versions simply lacked a variable or

two (which weren’t used anyways) and so were simple to fix. We have decided to

skip the undocumented chunk types for the time being, since to our knowledge they

are not needed to display the models correctly. Paradox didn’t use all the features

that EmotionFX provided them, so this is hardly surprising. Nevertheless, if we do

find proper documentation for these and their functionality at a later date and we

find they do make a difference, we will return to this and see about implementing

them.

4

 5

Satisfied with our prototype, we then integrated the model and animation loader

into the main project and used it to load “actors” defined in GFX text files. These

include buildings like forts and ports/naval bases, with variants for different

building levels, as well as a wide variety of military unit models, both land and

naval. We support loading a specific model and idle, move and attack animations for

each unit and graphical culture type combination, with infantry (for land units) and

the generic graphical culture type as fallbacks when specialised models are missing.

We also load and attach guns and helmets chosen based on graphical culture type, as

well as extra attachments specified in the actor’s GFX file definition, for example

Zulu infantry have a shield, as well as their cultural “gun” variant (a spear).

Mounted units are a special case in which the horse is generated as the base model

with the soldier as an attachment, with alternate animations to make the soldier

ride, rather than stand, on the horse. Each unit comes with a flag, either on a pole

beside it or floating above it, rendered using a large texture made by stitching

together each flag variant for every country in the game.

 5

 6

Map

Our map has received a lot of care since the last dev diary. Province colours now

match their Victoria 2 equivalents, putting an end to the off-putting slightly-too-

bright colours of the map’s earlier iterations. The terrain textures have been

improved, with better placement, scaling, blending and visibility in coloured

provinces, as well as geographical tinting to give some variety despite using the same

terrain types across the map. Water is no longer a single solid shade of blue, but is

instead textured with bright coastlines and varying tint across the map. And of

course, provinces now have names, which does a lot to make OpenVic look and feel

like Victoria 2.

As you zoom out, the terrain of the detailed map is replaced with a flat, parchment

like texture, with shaded coastlines adding to the antique map style (and hopefully

compensating for the borders I need to get around to adding).

6

 7

Menus

In the last Dev Diary we saw some early examples of menus and discussed the

system for generating them from GUI and GFX files. Since then the menu

generating system has been developed further to support more elements including

sliders, scrollable lists, and overlapping icons (e.g. for province cores and modifiers).

More menus have been added, in particular the nation management screens, with

accompanying scripts to react to input and update their contents.

The most complex of these is the Population Menu, with around 1.5k lines of

supporting C++ and GDScript code. It has all the main features of Victoria 2’s

version, with an expandable and selectable state and province list, pop type filter

buttons, and pie charts showing the distribution of pop types, cultures, religions,

issues, ideologies and votes of the selected pops. The pop table is packed with

information including size, culture and location labels, pop type and religion icons,

vote and issue pie charts, and unemployment and needs progress bars.

7

 8

Although some of this information is based on placeholder data, for example each

pop’s issues, ideologies and votes are currently randomised, everything beyond that

is working in its finished state carrying the data up from the C++ simulation to the

Godot menu. All of this is supported by an intricate internal system that collects

and filters selected pops, calculates statistics about them, and makes all of the data

available in a performant manner - rather than sending all the information for the

currently selected pops up from the C++ layer to the GDScript layer, we carefully

keep track of what’s currently visible and send only what’s needed. This means the

menu can easily handle having all the world’s pops selected at the same time, as they

are by default in our current dev build.

Art Team

With a solid framework of the game now firmly before us, the Art Team has begun

drafting concepts for original OpenVic custom assets. The recent progress of the

Art Team can be divided into two categories, the UI concept art and the 3D models.

8

 9

We’ve recently scoped out our UI requirements, and have begun developing them

from there, while our 3D modelling scope is still being drafted. We’ve explored a

number of UI concepts, looking at ways to improve both the visual presentation and

function enhancements to the user experience, such as the Additional Info Bar

concept. There have been discussions on a Multiplayer Server browser and the forms

that it would take, alongside plans for a Mod Selection Menu.

Our 3D Modellers have also

been hard at work, and have

produced a substantial number

of custom assets for us recently.

Thanks to this deluge of custom

additions, (such as a wider

variety of unit models or factory

levels visible on the map) that

could be added to OpenVic.

9

 10

Victoria 2 Directory Selection

If you want to try out OpenVic for yourself you can download our latest release

from Github and run the executable for your operating system. If you move the

executable, make sure to move the other files in the folder as the program needs

them to run. You'll need to have Victoria 2 installed, as OpenVic reads its define to

provide the same content and graphics as vanilla Victoria 2. OpenVic will try to find

the install folder as described in the steps below, bit if it can’t be found

automatically you’ll be asked to select the folder through a menu when first running

the game.
This only needs to be done once, as after that the path will be saved for future use.

How OpenVic finds your Victoria 2 Install:

1. If you supplied this path (using a command line argument –s “<path>“) to a

folder named “Victoria 2” that contains “v2game.exe” in it. It then uses that

path (OpenVic doesn't use the exe, we just check that it exists to confirm we’ve

found the correct directory), else

2. Checks if the directory the OpenVic executable is placed in is a valid Victoria 2

install following the rules of step 1 , else

3. Searches for your Steam programs directory and checks for a Victoria 2 install

following the rules of step 1, else

4. It will ask the user to supply the path to Victoria 2 manually.

Once the path is found, it is stored in the game settings so that these checks would

not have to be performed again.

 10

 11

Conclusion

As we are coming to an end with this diary, we wanted to thank everyone for their

support and patiently waiting for this milestone conclusion of the project. If we

haven’t bored you out with these technical details and you also share our enthusiasm

for constructing this monumental work, then please feel free to submit your

application here.

We would love to hear from you and see how your talents can help the team achieve

greatness!

11

https://docs.google.com/forms/d/e/1FAIpQLScRMB9sQKRH1wlWCN4NLf2FUudU35FayGSn0hJHVwt8ViVV-A/viewform
https://docs.google.com/forms/d/e/1FAIpQLScRMB9sQKRH1wlWCN4NLf2FUudU35FayGSn0hJHVwt8ViVV-A/viewform

 12

As ever, thanks again for
following our motley project

and see you in the next one!

The OpenVic Team

