

Dev Diary 8

 2

Salutations!

Welcome back for our 8th OpenVic Dev Diary! It’s been a while since our last

instalment, so we’ll begin with an overview of what the project has been up to in the

interim;

• With the completion of a major development phase, a significant portion of the

game’s dataloading is now complete. Thanks to this we have also begun

working on the game’s simulation, alongside further additions to the UI.

• We constructed a firm framework upon which we could build the game’s data

and mechanics, which involved reorganising old code and preparing space for

brand new code.

• From there, we started on the main simulation, which is full of equations and

algorithms. This facilitates functions such as calculating country scores, buying

and selling goods, scripts for decisions and events, and all sorts of other stuff

that makes up the game logic.

• To ensure that we are perfectly emulating the behaviour of Victoria 2’s systems,

research spearheaded by our dedicated team members such as General WVPM,

alongside a wide collection of modders and Vic2 experts have diligently combed

through over a decade’s worth of guides, forum posts and occasionally-accurate

wiki entries, all with the aim of verifying all these claims ourselves and

ensuring a standard for accuracy and faithfulness to Vic2

• We also created several special “research mods”, which contain a minimal set of

defines, allowing us to test specific game mechanics in a clean environment.

All this work has allowed us valuable insight into the limits of Vic2’s defines

parsing, demonstrating exactly what the game requires and how it behaves with

unexpected inputs, which allows us to emulate Vic2’s mod handling as closely as

possible. For equations, we have been documenting our confirmed findings in

separate text files to the code itself (hopefully more legible to non-developers) which

should hopefully assist all hoping to further understand how Vic2 actually works.

2

 3

SIMULATION:

Architectural Work:

With dataloading mostly solved, our focus has shifted towards working on the game

simulation. During this we have decided to make some architectural changes to the

game’s core code. One of the major changes has been separating everything into two

separate sections, Definition and Instance.

The Definition section contains the constant data loaded by the game during

startup, which should not change after that point. The Instance section, as you

might guess, contains the opposite, made up of mutable game-state data, which

changes over the course of a game session.

This approach allows us to easily start new game sessions, as we can simply destroy

the instance section and re-initialize the entire list, instead of resetting every

potential variable. Additionally, this prevents accidental modification of constant

game data after it has been loaded.

3

 4

There are also additional technical changes, such as making use of various

specialised containers, tailored to best fit the needs of specific types of data making

up the game-state. Some systems, such as the handler for the contents of defines.lua,

have been completely rewritten to improve performance. Mapmodes have also been

reworked to better fit the vanilla mapmodes that it will primarily use in game.

Some minor gaps in the dataloader system have been patched, such as the loading

sound effect and song chance defines, alongside a variety of UI defines.

Modifiers and Rules:

Many of Victoria 2’s mechanics are affected by modifiers, meaning that these are an

essential component to OpenVic.

The modifier system contains a multitude of components; Modifiers,

ModifierEffects , ModifierValues, ModifierSums, the ModifierManager and the

various caches for ModifierEffects that it contains.

Modifiers are broadly split in two sections,

with one side being defined modifiers that can

be applied to things and the modifier effects

that form them, and the other side being

tracked modifiers and the sum of their effects

on a particular object. The objects that

modifiers are applied to are countries,

provinces and military units, with much of our

efforts being focused on countries and

provinces so far.

On every game-state update, we sum up all the

modifiers that are currently affecting each

country and province, alongside the sum of

each province’s owner and further the sum of

each country’s own provinces to get the final

sum of modifiers for each country and

province.

4

 5

We are careful not to double-count any modifiers,

for example an owned province contributes

modifiers to its owner and receives its owner’s

contribution (this includes the contributions from

other owned provinces), while ensuring that it

does not receive copies of the modifiers it

contributed to the country itself.

We have tried two distinct approaches to

implementing this system; one where the countries

contribution is added to their owned provinces as

a part of the game-state update alongside the

countries receiving their owned provinces’

contribution, and the other where only the

province contributions are fully added to their

owner countries while the country contributions

to their provinces are kept separate and only

added for specific modifier effects at the moment

they’re requested to be used elsewhere in the game

code.

In the end, both of these approaches were

implemented, with a toggle within the game code

controlling which is used during compilation. This

allows us to compare the performance of these

approaches during development and make heavier

use of the modifier system, as well as compare the

output results to more easily spot bugs.

Rules, while similar to Modifiers, are not as

thoroughly tied into the game mechanics. Due to

the similarities of these systems, we integrated

them alongside each other. Rules are only applied

at the country level, and even then there are only a

handful of sources.

5

 6

Every game-state update we calculate the overall set of rules affecting each country,

allowing them to be queried elsewhere in the code to control whether certain

actions are allowed.

Economy:

RGOs:

Each land province can have a Resource Gathering Operation (RGO). An RGO has

no inputs and produces a single output good. RGOs are assigned to provinces in the

history defines file (for example: “trade_goods = timber”). The trade_goods have to

be converted into a production type. OpenVic now supports this and also helps

modders validate their history by providing warnings for invalid goods.

Vic2 vanilla uses two types of production templates: ”RGO_template_farmers” and

“RGO_template_labourers”, each with their own worker POP type. Farmers and

labourers are defined as equivalent to each other, meaning that when a province

changes its RGO production type, equivalent pops are converted so that they can be

employed by the RGO. This is supported in OpenVic just like Vic2.

6

 7

Each province has a province size determined when starting a game or loading a

savegame. The maximum workforce size of an RGO scales with the province size.

This size calculation has been known for years, although it took us a little while to

determine which sources of rgo_size modifiers are included in the calculation, but

OpenVic should emulate Vic2 perfectly here.

At the start of each playthrough there is a procedure that kickstarts the economy;

workers are hired, goods are produced and taxes are collected. We haven’t figured

out exactly how this works yet. For now each RGO just hires all available workers.

Not all workers work the same though. Some workers simply provide throughput,

others modify output efficiency. You can even create a worker that modifies input

efficiency. We figured out how these effects combine with the effects from modifiers

and implemented it in OpenVic.

So we have the trade_goods to production type mapping, the pop conversion to

equivalents, province size, hiring of workers and the modifiers. That’s all we need to

have RGOs produce goods. All this means that RGOs in OpenVic now produce

goods, sell them, and pay income to POPS.

Market:

POPs often have greater needs than can be satiated by local RGO produce, chiefly

being consumer goods. Fortunately, thanks to it being the 19th century, they can use

currency to buy these goods. That however leaves a question; How much are these

goods worth?

This requires a market. We discussed ideas for how this might work, during which

General WVPM created a demo in Python. Modders may wish to add their own

mechanics to the market, and Vic2 has its own base mechanics. As a result, the

OpenVic market implementation is designed to allow the changing of how goods

are traded and the way prices for those goods are determined.

7

https://forum.paradoxplaza.com/forum/threads/how-is-province-size-calculated.870984/#post-19779963

 8

The system is designed as follows: Every actor (be it a POP, RGO, factory or

country) can place buy or sell orders into a central market system. The market then

determines the price for each good and informs each actor how much was bought/

sold and how much money is gained or was left after buying.

For buying, we created a custom order called the “Buy-up-to order”. The buyer

states the desired quantity and the maximum total cost. If the price multiplied by

the desired quantity exceeds the maximum total cost, the buyer is forced to buy less.

If the same calculation does not exceed the maximum total cost, (and assuming that

there is sufficient supply of the good) the desired quantity is bought and the leftover

money is returned.

Buyers allocate their money when placing their orders, which means that this

allocation has to be optimal. If for example an artisan producing steel requires 5

coal and 20 iron, the optimal allocation of money would result in an equal portion

of coal inputs and iron inputs. This means that buying 3 coal and 12 iron is preferred

over buying 2 coal and 20 iron instead.

For selling, we currently only support one type of order, the market sell order. The

seller states his intention to sell a certain quantity of a good for whatever price he

can get. This does not guarantee that all goods are sold, however.

UI

In the latest version of OpenVic you can see that we are now using Vic2’s minimap

and map menu. We’ve also made significant jumps with other map modes since the

last dev diary, with many of these map modes now working much closer to

expectations now.

Take a look at the RGO map mode:

8

 9

9

 10

As you can see, the resource icons are now displayed on top of the provinces and

additionally the nation capitals are also displayed. In game development, these are

known as billboards: textures which use a shader (The shader tells the graphics card

how to display your object in 3D) to always face the game’s camera/screen. We use

Godot’s multimesh, which allows us to easily (and cheaply performance-wise)

render hundreds to thousands instances of a single model in the game world, all

with just a single draw call to the graphics card.

Upon game start, we find the city positions within each of the provinces and place a

simple flat square model at those positions. We give a number to our billboards

shader for each province, which tells it which picture among capitals, resources,

crimes, etc. to display. This shader is also what tells the squares to face the camera

and places them in front of everything else in the 3D world.

We’ve also been recently working on the UI for the Technology menu. While it still

lacks some features such as image loading, descriptions of selected techs and

displaying available inventions, we have successfully implemented tech schools, tech

folders and tech completion status, all of which load and display in a dynamic

fashion. This means that mods that add rows of techs or even whole new tech

folders (such as Army, Navy or Industry as shown prior) will work out of the box in

OpenVic.

10

 11

To further complement the Budget and Population topbar panel, we’ve fully

implemented the search panel, allowing you to find and move to countries and

provinces.

An additional upcoming UI update is the ledger, which will be a great way to review

the accuracy of simulation data and visualise our progress.

Cursors:

We’ve also made a major UI update with the implementation of cursor loading

from Vic2. There are two varieties of cursor, standard cursors and animated cursors

(stored in the windows .cur and .ani format respectively).

11

 12

Godot doesn’t support these image formats out of the box, so we wrote some code

to load and store these images ourselves. Godot also lacks support for animated

cursor textures, which necessitated us adding our own system to animate the cursors

too.

In all, OpenVic now has working cursors integrated into the game, with the only

remaining work being to tell the game when it should switch cursors as we

implement more features such as unit selection.

Tooltips and Labels:

Finally, we have fully integrated tooltips into OpenVic’s UI. This includes all our

custom UI element nodes which have helper functions, allowing easy updating of

tooltip text which is automatically displayed as the mouse hovers over each node.

The tooltip itself uses information from the GUI defines files so that the texturing

matches that of either vanilla Vic2 or a custom modded texture. We still need to

write code to generate the specific text for each element’s tooltip and update it as

the game progresses, which we have already done for several menus, and we to plan

to continue doing throughout UI development.

12

 13

We have created a new custom label node for tooltips, which is also used for regular

text labels throughout the UI, supporting Vic2’s various localisation features, such as

color codes (which are dynamically loaded from the defines files, and therefore

easily modifiable), the special currency icon, and dollar-enclosed substitution values

(such as “Current employees: $EMPLOYEES$/$EMPLOYEE_MAX$”).

Art Team:

While much of our recent effort on OpenVic has been focused on emulating the

intricate featureset of Vic2, our Art Team has slowly but steadily been churning

away some custom assets for later integration into the game.

Take a look at some of the 3D models recently cooked up by Rataz:

 13

 14

14

 15

Alongside this we’ve been planning UI graphics for entirely new menus we hope to

add in the future as QOL features. Things should be interesting on this front, so stay

tuned!

Conclusion:

And finally, we'd like to thank everyone following this project for being patient

(our dev diary releases are gradually getting more and more spaced out we’re

realising).

Have no fear however, we’ve just heavily focused on building the internal

mechanisms of the game, which while full of interesting and technical solutions, are

often rather difficult to show off in their fullest in the dev diary format.

In fact, as we’ve been writing this Dev Diary, we’ve been asking ourselves whether

the folks here are interested in increasingly technical sections on how we overcome

these problems or if you would prefer if we simplied some of these sections to make

future dev diary reading experiences more pleasant.

We’re looking forward to sharing more with you as we continue to explore and

understand the depths of Vic2’s game systems and bring them to OpenVic!

15

 16

As ever, thanks again for
following our motley project

and have a Happy new year!

The OpenVic Team

