
Dev Diary 2
Doing it Properly

Dev Diary 2
Doing it Properly

A common pitfall that is easy to fall into as a dev team with a highly

publicised project is to rush to a solution, looking for quick and easy

results that fall apart under closer inspection. Therefore, the team is

taking a professional approach, employing industry-standard tech-

niques our team members are familiar with from their extensive expe-

rience in software engineering. Our first goals are; focusing on outlin-

ing requirements, goals, and building our software architecture, while

we begin the basics of what will become OpenVic2.

Every software project starts with an objective or vision of a product,

for us it’s an open-source recreation of Victoria II. But while any ama-

teur can knock together code, get some nice visuals quickly and con-

vince themselves they’re not far from a final product, professionals

start with requirements. Whether it’s user stories, use cases, require-

ments or a project schedule with inch pebbles approaching mile-

stones, every project looking to design complex software will define a

set of functionality as discrete, documented units. In a single phrase a

requirement is “a single piece of software functionality”, big or small,

complex or simple. When we write requirements and we link them to-

gether, we build up a picture of what the software will look like over

time. It’s a good way to start off your design and funnily enough, that

tends to come next when making software.

1

Doing it Properly

But why use requirements? Well over time software projects get big,

sometimes so big that lines of code numbers in the millions. Tracking

what bits work and what doesn't becomes seriously hard work, but

it’s easier if you can follow requirements linked in a program. Line

them up against tests for them and bingo, failed tests tell you where

stuff isn’t working. X, Y, Z requirements failed, look for the code

where they are documented as comments and you’re right there on

the problem. Compartmentalisation, documentation and traceability.

It’s just writing software like everyone does but with more mindful

planning and more readable, more maintainable code.

So far we’re at circa ~685 requirements and counting, of which 230

are in-production, functional requirements. By the finish of the pro-

ject we’ll easily be into a high 5-figure number. It’s a serious bit of

work and a lot of bureaucracy to manage, but in the end it’s the best

way to run large software projects relying on high-performance, com-

plex code.

2

Dev Cycle 1 Requirements

Doing it Properly

So, why is this our priority? The team believes that in order to truly

and definitively lift OpenVic2 into the modern standard in games, no

half measures should be taken when it comes to the speed and stabil-

ity of the product. We aren’t aiming for a product that is kind of more

stable with some buggy backwards compatibility with an arguably

more modern feature set, we are aiming for the best of what we be-

lieve is achievable within a reasonable timeframe. Mounting architec-

tural instability is a serious issue in many complicated software prod-

ucts, and it’s an issue we are determined to snuff out with good plan-

ning, design, and standards for what we make.

Speaking of what we have made, our teams have hardly been idle

while this planning phase takes place, the art and music teams have

been hard at work drawing up concept art, UI style prototype, up-

scaled and updated RGO icons, and mixing professional music to an

industry standard (which we will talk about more in a soon to come

dev diary)

On the final page are some examples of this amazing work and the

many work in progress pieces of modelling, music, concept art, and

UI prototypes we have. I hope you like them!

Well that’s all I have for you today folks, I look forward to seeing you

all in the next dev diary!

3

Doing it Properly

3

Loading Screen by PeuPeu

Iron Resource Icon by JunkJen

Button Icons by qazdr6

Uniform Reference by Enigmatic

Catylist’s take on Johan’s Waltz

Base for Unit Model by Bon Marche

